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The general stability criteria of the supercritical Ginzburg-Landau equations in moving media are considered
for different forms of the convective velocity which may change in space and time both periodically and
randomly. The results are correlated with experiments on the propagation of vortices in superconducting films
under the influence of a bias current. The role of the finite size of a sample is discussed.
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I. INTRODUCTION

A. The Ginzburg-Landau equation in moving systems

A well-accepted way of studying phase transitions is by
means of the supercritical Ginzburg-Landau equation for the
order parameterC,

] C

] t
=

]2C

] x2 −
dF

dC
=

]2C

] x2 + aC − bC3, s1d

where the homogeneous part of the free energy which is
connected with a phase transition has the simplest analytical
form F=−aC2/2+bC4/4, and the homogeneous solutions
C=0 and C=Îa/b describe the disordered and ordered
phases, respectively. For the case of superconductivity, the
phenomenological equation(1) was derived afterward[1]
from the microscopic theory of superconductivity with the
function C proportional to the local value of the energy gap
parameter.

Usually one considers phase transitions in immobile sys-
tems, where the full derivative in time is replaced by the
partial derivative,dC /dt→]C /]t. However, there are some
examples where the particles undergoing a phase transition
are carried along by the mean flow that passes through the
region under study. These include problems of phase transi-
tions under shear[2], open flow of liquids[3], Rayleigh-
Bénard and Taylor-Couette problems in fluid dynamics[4],
dendritic growth[5], and chemical waves[6]. An additional
example, which we considered earlier[7], is the motion of
vortices in superconductors.

In all the above examples Eq.(1) will include the convec-
tive velocity v,

] C

] t
+ v

] C

] x
=

]2C

] x2 + aC − bC3. s2d

The magnetic field enters a type-II superconductor in the
form of quantized objects—vortices. The motion of vortices
is the subject of intensive study[8], as well as the related
problems of dynamics of the interfaces in superconductors
[9], and the effect of fluctuations on propagating fronts[10].
However, a new phenomenon, the formation of an ordered
vortex phase in superconducting films subjected to the simul-
taneous action of both magnetic field and bias current, has
only recently become a subject of experimental study[11].
Due to the nonhomogeneous surface potential barrier and a

strong vortex interaction with spatial defects(pinning cen-
ters), the vortices penetrate a superconductor in a disordered
vortex state. If the magnetic field is smaller than some
temperature-dependent critical magnetic fieldB* , an ordered
phase will appear at certain distance from the sample edge.
The temperature dependence in Eq.(1) is replaced now by
that of the magnetic field, i.e.,a=a0sB* −Bd. The external
magnetic fieldB is assumed to be constantsB,B*d and with
it the coefficienta in Eq. (2). The control parameter in this
case is the bias current of densityJ. This current will drag
the vortices along the sample, helping them to destroy the
disordered phase by assisting the vortices to climb the pin-
ning barriers. The transformation of the disordered vortex
phase into an ordered one in the presence of a bias current
can be directly observed by magneto-optical measurements
of high temporal resolution, where a sharp interface between
the ordered and disordered vortex phases has been detected
[11].

In general, one can estimate the coefficientsv anda in Eq.
(2) in the following way. According to the Lorentz law, the
velocity v is defined by the force acting on the vortex with
flux quantumF0,

v =
F

h
=

J 3 F0

ch
, s3d

whereh is the friction coefficient of the vortices[12].
In order to estimate the coefficienta, assume that the

coefficientsa andb have the simplest analytical form

asHd = a0sB* − Bd, bsBd = bsB*d = bc. s4d

Then the free energy differenceDF near the boundary
between ordered and disordered phases,DF=a2/b, is equal
to the magnetic energy, that is,

H2

4p
=

a2

b
=

a0
2sB* − Bd2

bc
, s5d

and the coefficienta0 is defined by the magnetic susceptibil-
ity at the phase boundary.

Note that the experiments described in[11] were per-
formed on 2.630.330.05 mm3 and 2.430.330.02 mm3

samples of NbSe2 at temperature 5 K, magnetic field 0.4 T,
and current density of the order of 1 mA mm−2. In this case
the vortex velocityv was of the order of 10−3 m sec−1, in
accordance with Eq.(3).
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These experiments can be expanded to ac currents, to sys-
tems with periodically ordered pinning centers, etc. In the
interpretation of these and similar experiments one has to
take into account the presence of noise. It is just the aim of
this work to prepare the basis for analyzing such experi-
ments.

B. Solution of the linearized equation with constant velocity

For the stability analysis we will use the linearized ver-
sion of Eq.(2):

] C

] t
+ v

] C

] x
=

]2C

] x2 + aC. s6d

One can eliminate the term inv by defining a new function
Gsx,td such that

Csx,td = Gsx,tdexpSvx

2
−

v2t

4
D . s7d

On substituting Eq.(7) into Eq. (6), one gets

] G

] t
=

]2G

] x2 + aG, s8d

i.e., the stability analysis of the linearized version of the
Ginzburg-Landau equation(6) with constant convective ve-
locity is similar to that of the appropriate equation(8) for
immobile systems. The solution of Eq.(8) is proportional to

expFat −
x2

4t
G . s9d

Then, according to Eqs.(8) and(9), the exact solution of Eq.
(6) will contain an exponential of the form

expFat −
sx − vtd2

4t
G . s10d

The exact solution of the linearized equation(6) can be
found only for a constant convective velocity. When this
velocity contains periodic or random terms we content our-
selves with approximate solutions.

C. Convective and absolute instability

In contrast to immobile systems, there is more than one
type of instability in moving systems. The growing mode can
be shifted by flow so that locally a system remains stable,
and the phase boundary is moving downstream(convective
instability), while for an absolute instability the phase bound-
ary is moving both downstream and upstream, eventually
covering the entire system. The following simple arguments
[13] illustrate these two possibilities.

The exact solution of the linearized equation(6) contains
the exponential form(10) which describes the propagating
wave packet. For eacht one can find two values ofx, x
=fsv±Î4adtg, which define the behavior of the two “edges”
of the wave packet. Fora,0, there are no realx, i.e., no
divergent rays, and the system is stable. Forv2.4a, both
values ofx have the same sign, and the solutionCÞ0 of Eq.

(6) is carried away with the convective velocityv (convec-
tive instability). Finally, for v2,4a, the edgesx1,2 have dif-
ferent signs, i.e., the waveCÞ0 moves in both directions
(absolute instability).

II. SOLUTION OF THE LINEARIZED EQUATION
WITH VARYING VELOCITY

A. Slowly varying velocity

Let us consider our basic equation(6) in the case where
the velocity is a slowly varying function of the spatial posi-
tion x,

] C

] t
=

]2C

] x2 − vsexd
] C

] x
+ aC, s11d

wheree!1. The full analysis of Eq.(11) with a=asexd and
v=const has been performed by Hunt and Crighton[13]. By
substituting

Csx,td = Fsx,tdexpS1

2
E

0

x

vsex8ddx8D , s12d

one gets the following equation forFsx,td:

] F

] t
=

]2F

] x2 + Fa +
1

2

dvsexd
dx

−
fvsexdg2

4
GF. s13d

Thus, for a linear functionvsexd=v0+v1ex, one gets

] F

] t
=

]2F

] x2 + Fa −
v0

2

4
+

1

2
ev1 −

1

2
v0v1ex −

1

4
v1

2e2x2GF.

s14d

Hence, with the help of Eq.(12) the linear variation of
vsexd in Eq. (11) transforms into a quadratic variation of
asexd in Eq. (11) with v=0. The analysis of this case[13]
shows that the wave packet “edges” occur at

x2 , H4amax

ev1
− 2Jt, amax;Îa +

ev1

2
. s15d

By analogy to the analysis performed above forv=const,
one concludes that Eq.(15) has no real solutions forx, i.e.,
the system is stable, when, forv1.0,

amax,
ev1

2
. s16d

This condition replaces the stability conditiona,0 for a
constant convective velocity.

All the above analysis refers to the linear equation(6).
However, the possibility exists that the nonlinearity in Eq.
(2) dominates the inhomogeneity. This can happen, for ex-
ample, when at the entranceasx=0d is already larger than
v2/4, i.e., the condition of absolute instability is satisfied,
and the new mode develops at a distancex=x0 such that the
function a=a0−a1x0 is still larger thanv2/4 [14].

B. Stability conditions for spatially dependent periodic
damping

The motion of fluxons is interrupted by their captures by
pinning centers. One can prepare a system in such a way that
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pinning centers are located periodically or quasiperiodically
along the system[15]. Then the convective velocity will vary
periodically along the system, and the stationary version of
Eq. (6) takes the form

]2C

] x2 − vs1 + b cos lxd
] C

] x
+ aC = 0. s17d

Equation(17) with periodic coefficients has a Floquet solu-
tion of the form[16]

Csxd = expsaxdcsxd

= expsaxdo
n=0

`

An sinSnlx

2
D + Bn cosSnlx

2
D , s18d

where the periodic functioncsxd is expanded in a Fourier
series. According to the Floquet theorem, the Floquet multi-
plier a must vanish at the stability boundaries. On substitut-
ing Eq. (18) with a=0 into Eq.(17) and comparing the har-
monics in front of the sine and cosine terms, one obtains an
infinite system of linear equations forAn andBn which have
nonzero solutions if the infinite determinant of these equa-
tionsDsa=0d vanishes,Dsa=0d=0. One has to truncate this
determinant at somen, and afterward to improve the result
by taking into account the larger values ofn. Leaving only
terms withn=1, one obtains the following equations:

Sa −
l2

4
+

lbv
4
DA1 +

lv
2

B1 = 0,

−
lv
2

A1 + Sa −
l2

4
−

lbv
4
DB1 = 0. s19d

Equations(19) have nontrivial solutions if the determinant of
these equations vanishes, which gives

b =Î4 +
s4a − l2d2

v2l2
. s20d

The stability boundary(20) of the solutionC=0 has a V
form in theb-l plane with the stable state located inside this
curve.

Let us consider now a special case of Eq.(17), when the
amplitude of the periodic force is small.

C. Slightly modulated convective velocity

One can find the approximate solution of the linearized
Ginzburg-Landau equation with the modulated convective
velocity

] C

] t
=

]2C

] x2 − vs1 + b cos lxd
] C

] x
+ aC s21d

for the case of a weak modulationb!1. As was done in Eqs.
(7) and(8), one can eliminate the term inv by defining a new
function Gsx,td such that

Csx,td = Gsx,tdexpSvx

2
−

v2t

4
D . s22d

On substituting Eq.(22) into Eq. (21), one gets

] G

] t
=

]2G

] x2 − vbS ] G

] x
+

v
2

GDcos lx + aG. s23d

Sinceb is assumed to be a small parameter, we will expand
the functionG in a perturbation series as

Gsx,td = o
n=0

`

Gnsx,tdbn, s24d

and consider only the two lowest-order terms in the expan-
sion. These are readily seen to satisfy

] G0

] t
=

]2G0

] x2 + aG0,

] G1

] t
−

]2G1

] x2 − aG1 = − vSv
2

G0 +
] G0

] x
Dcos lx. s25d

Equations(25) can be easily solved with the appropriate ini-
tial and boundary conditions.

D. Space-dependent random velocity

We consider a linearized equation(6) with the coordinate-
dependent random velocity

d2C

dx2 − vf1 + jsxdg
dC

dx
+ aC = 0, s26d

where the random forcejsxd is a Gaussian variable with zero
mean and white noise correlator

kjsxdjsx1dl = Ddsx − x1d. s27d

Let us rewrite Eq.(26) as

LhCj = vj
dC

dx
, s28d

where

LhCj ; S d2

dx2 − v
d

dx
+ aDC. s29d

In order to convert the differential equation(26) into an
integro-differential equation we apply, following[17], the
operatorL−1 to Eq. (28), which gives

C = L−1Hvj
dC

dx
J . s30d

Using the result thatLfL−1hfjg; f, one can easily check
that the integral operatorL−1, which is inverse to the differ-
ential operatorL defined in Eq.(29), has the following form:

L−1hfj ;
1

a1
E

0

x

dx1 expFv
2

sx − x1dGsinfa1sx − x1dgfsx1d,

a1 =Îa −
v2

4
, s31d

i.e.,
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Csxd =
v
a1
E

0

x

dx1 expFv
2

sx − x1dGsinfa1sx − x1dgjst1d
dC

dx
sx1d

s32d

and

dC

dx
=

v
a1
E

0

x

dx1 expF−
v
2

sx − x1dGjsx1d
dC

dx
sx1d

3Ha1 cosfa1sx − x1dg +
v
2

sinfa1sx − x1dgJ . s33d

On substituting Eq.(33) into Eq. (28), one obtains

S d2

dx2 − v
d

dx
+ aDCsxd =

v2

a1
E

0

x

dx1 expFv
2

sx − x1dG
3jsxdjsx1d

dC

dx
sx1d

3Hv
2

sinfa1sx − x1dg

+ a1 cosfa1sx − x1dgJ . s34d

On averaging of Eq.(34), for the noise defined in Eq.(27)
one finds

Kjsxdjsx1d
dC

dx
sx1dL = kjsxdjsx1dlKdC

dx
sx1dL = DKdC

dx
sxdL .

s35d

The substitution of Eq.(35) into the averaging equation(34)
shows that for white noise one gets

F d2

dx2 − vs1 + vDd
d

dx
+ aGkCl = 0. s36d

On comparing this equation with the stationary version of
Eq. (6), one concludes that the existence of noise results in
the renormalization of the velocity,v→vs1+vDd, which has
to be substituted in the instability criteriona.v2/4, leading
to

a ù
v2s1 + vDd2

4
s37d

as the condition for the appearance of an absolute instability
for larger values ofa.

E. Time-dependent random velocity

We start from the case of the time-dependent random ve-
locity

] C

] t
=

]2C

] x2 − vf1 + jstdg
] C

dx
+ aC, s38d

where the random forcejstd is a Gaussian variable with zero
mean and white noise correlator

kjstdjst1dl = D1dst − t1d. s39d

After performing the Fourier transform

Csx,td =E
−`

`

C̃sk,tdexpsikxddk, s40d

Eq. (38) takes the form

] C̃

] t
= fa − k2 − ikv − ikvjstdgC̃. s41d

The solution of Eq.(41) with the initial conditionC̃st=0d
=C̃0 is

C̃sk,td = C̃0 expfsa − k2 − ikvdtgKexpS− ikvE
0

t

jstddtDL ,

s42d

which, after using the well-known result
kexps−ikvde0

t jstddtl=expf−sk2v2D1/2dtg and performing the
inverse Laplace transform, gives

Csx,td < expFSa −
v2

4s1 + v2D1/2dDt +
2xv − x2/t

4s1 + v2D1/2dG .

s43d

It follows from Eq. (43) that an instability occurs when

a .
v2

4s1 + v2D1/2d
, s44d

which is the simple generalization of the conditiona.v2/4
in the absence of noise.

F. Time-dependent periodic damping

Let us compare now the results obtained in the previous
section with the periodically varying damping described by
the equation

] C

] t
=

]2C

] x2 − vf1 + b cossVtdg
] C

dx
+ aC. s45d

On performing calculations similar to Eqs.(38)–(43) one ob-
tains the following solution of Eq.(45):

Csx,td < expFSa −
v2

4
Dt +

vfx − sbv/VdsinsVtdg
2

−
fx − sbv/VdsinsVtdg2

4t
G . s46d

The instability occurs when the conditiona.v2/4 is satis-
fied, i.e., the addition of a time-periodic damping does not
change the stability condition of the original equation(6).

III. APPROXIMATE SOLUTIONS OF NONLINEAR
EQUATION FOR FAST VARYING SPACE-PERIODIC

VELOCITY

So far, we have considered the linear version(6) of the
non-linear equation(2), which was sufficient for the stability
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analysis. Note that for the subcritical Ginzburg-Landau equa-
tion which contains the third and fifth powers of the order
parameter, one has to consider nonlinear stability analysis
[18].

Let us consider the parametric forceb cos lx as rapidly
oscillating inx. Then, one can consider the nonlinear equa-
tion (2) with v replaced byvs1+b cos lxd,

d2C

dx2 − vs1 + b cos lxd
dC

dx
+ aC − bC3 = 0. s47d

Here, one can use an analytical method of separation be-
tween the slow scalex and the fast scalelx, similar to the one
used for a pendulum with fast oscillation of its suspension
point [19]. Let us decompose the functionC into a sum of
slowly and rapidly varying partsC=C1sxd+C2sx, lxd, which
will be chosen in the following form:

C = C1sxdS1 +
vb

l2
cos lxD . s48d

On substituting Eq.(48) into Eq.(47) one obtains two groups
of terms, which are either slow ones varying significantly
only over distances of the order ofx, or fast ones changing
over the distancesp / l. Performing the averages over dis-
tances of order ofl−1, one can replace the functionC1sxd by
its average over a single cycle length,C1sxd→C1sxd, while
sin lx, cos lx, and sin3 lx vanish, sin2 lx= 1

2, and one gets
finally

d2C̄

dx2 − Sv +
v2b

2l2
DdC̄

dx
+ Sa −

3v2

2l4
DC̄ − bC̄3 = 0. s49d

Hence, the existence of fast space oscillations of the convec-
tive velocity results in small corrections(proportional to
small factors 1/l2 and 1/l4) in the original equation.

IV. STABILITY CONDITIONS FOR A SAMPLE OF FINITE
SIZE

The finite size of a sample plays an important role in the
interpretation of real experiments. As a matter of fact, for an
infinite system the convective term can be simply trans-
formed away by going to a moving frame. Returning now to
the original linearized equation(6) one can write the solution
of this equation on the finite intervalf0,Lg with the boundary
conditionsC=0 at x=0 andC=C0Þ0 at x=L in the form
[20]

Csx,td = F1sxd + F2sxdexpFSa −
v2

4
−

n2p2

L2 DtG , s50d

where F1sxd and F2sxd are some functions ofx, and n
=1,2, . . . . Since the most rapidly growing solution corre-
sponds ton=1, a system is absolutely unstable for

a ù
v2

4
+

p2

L2 , s51d

i.e., for largeL the finite size of a sample results in small
change of the conditionaùv2/4.

V. CONCLUSIONS

Recently performed experiments dealing with the propa-
gation of vortices in the presence of a bias current[11] open
up a new area for both the experimenter and the theoretician.
From the theoretical point of view, the ordered-disordered
phenomenon in vortex matter provides another example of
phase transitions in moving systems. From the experimental
point of view, this branch of research has opened up a chap-
ter of studying the properties and possible new applications
of superconducting films. In addition to the dc biased current
used in[11], one can use an ac current, or one can use films
with periodically ordered pinning centers, which will intro-
duce an additional periodic(in time and space) component to
the convective velocity.

Looking forward and trying to trigger these and similar
experiments, we considered the theoretical basis for their in-
terpretation. A sharp interface between ordered and disor-
dered moving vortex phases is a quantity immediately mea-
surable by magneto-optical measurements of high temporal
resolution[11]. In order to find the stability conditions of a
disordered phase for the supercritical Ginzburg-Landau free
energy, it is sufficient to perform a linear stability analysis.
(This is in contrast to the subcritical case, where the nonlin-
earity is destabilizing and a nonlinear analysis is required
[18].) The stability criteria are formulated in term of the
coefficientsa andv in our equations, which are proportional
to the magnetic field and the bias current, respectively, and
by changing these parameters one can go from one regime to
another. In the case of a constant dc current, the well-known
inequalities a,0, 0,a,v2/4, and a.v2/4 define the
stable, convective unstable, and absolutely unstable regimes,
respectively. It turns out that for an additional convective
velocity periodic in time these criteria remain unchanged.
For an additional space-periodic component one can point
out in the amplitude-wave vector the curve(20) which di-
vides the stable and unstable regions.

Noise is a factor which is inherent in all experiments. It is
particularly remarkable that the component of the convective
velocity random in space results in an increase of stability
[see Eq.(37)] while the one random in time decreases the
stability [see Eq.(44)].

Additional progress can be achieved when one has a small
parameter in the problem. This latter can be a slowly chang-
ing or fast varying space-periodic velocity. Seeking the solu-
tions as a series in these parameters, one finds that in both
cases the system becomes more stable. The final comment
refers to the finite size of the sample in all real experiments.
It turns out [see Eq.(51)] that this results in only a small
change of the stability criterion.
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