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Phase transitions in moving systems
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The general stability criteria of the supercritical Ginzburg-Landau equations in moving media are considered
for different forms of the convective velocity which may change in space and time both periodically and
randomly. The results are correlated with experiments on the propagation of vortices in superconducting films
under the influence of a bias current. The role of the finite size of a sample is discussed.

DOI: 10.1103/PhysRevE.70.036116 PACS nuni)er64.60—i, 05.40.Ca

[. INTRODUCTION strong vortex interaction with spatial defeq{ginning cen-
terg, the vortices penetrate a superconductor in a disordered
vortex state. If the magnetic field is smaller than some
A well-accepted way of studying phase transitions is bytemperature-dependent critical magnetic fiBld an ordered
means of the supercritical Ginzburg-Landau equation for theyhase will appear at certain distance from the sample edge.

A. The Ginzburg-Landau equation in moving systems

order parametew, The temperature dependence in Etj. is replaced now by
that of the magnetic field, i.ea=ay(B"—B). The external
ﬂ = @ - oF = (92_\1; +a¥ - bW, (1) magnetic fieldB is assumed to be constai@<B") and with

it the coefficienta in Eq. (2). The control parameter in this

where the homogeneous part of the free energy which jcase is the bias current of density This current will drag

connected with a phase transition has the simplest analytic%l?e vortices along the sample, helping them to destroy the
form F=-aW?/2+bW¥*/4, and the homogeneous solutions isordered phase by assisting the vortices to climb the pin-
w=0 and ¥'=\a/b des<':ribe the disordered and Orderedning barriers. The transformation of the disordered vortex

phases, respectively. For the case of superconductivity, th%hase Into an ordered one in the presence of a bias current
phenomenological equatiofl) was derived afterwardi] can be directly observed by magneto-optical measurements

from the microscopic theory of superconductivity with the of high temporal rgsolution, where a sharp interface between
function W proportional to the local value of the energy gap the ordered and disordered vortex phases has been detected

parameter. [11]. . - .
Usually one considers phase transitions in immobile sys- I_n general, one can estimate t_he coefficignisida in Eq.
tems, where the full derivative in time is replaced by the@ |n.the follow!ng way. According to the Lorentz law, the
partial derivative dW/dt— W/ at. However, there are some velocity v is defined by the force acting on the vortex with

examples where the particles undergoing a phase transitiJHJX quantumd,,

are carried along by the mean flow that passes through the FJXd,

region under study. These include problems of phase transi- v=—= o 3)
tions under sheaf2], open flow of liquids[3], Rayleigh- n n

Bénard and Taylor-Couette problems in fluid dynanfés  where 7 is the friction coefficient of the vorticefl 2].
dendritic growth[5], and chemical wavefs]. An additional In order to estimate the coefficieat, assume that the
example, which we considered earligf], is the motion of coefficientsa andb have the simplest analytical form
vortices in superconductors.

In all the above examples E@L) will include the convec- a(H)=a(B —-B), b(B)=b(B)=bhc. )
tive velocity v, Then the free energy differenckF near the boundary
PRSP between ordered and disordered phagés:a?/b, is equal
— +p—=— +a¥-b¥s. (2)  tothe magnetic energy, that is,
at ax  IX .
H2 a2 aj(B -B)?

The magnetic field enters a type-Il superconductor in the 47 b b ) 5
form of quantized objects—vortices. The motion of vortices ¢

is the subject of intensive study], as well as the related and the coefficiend, is defined by the magnetic susceptibil-
problems of dynamics of the interfaces in superconductority at the phase boundary.

[9], and the effect of fluctuations on propagating frofiS]. Note that the experiments described [ihl] were per-
However, a new phenomenon, the formation of an ordereformed on 2.6<0.3x0.05 mn¥ and 2.4<0.3X 0.02 mn¥
vortex phase in superconducting films subjected to the simulsamples of NbSgat temperature 5 K, magnetic field 0.4 T,
taneous action of both magnetic field and bias current, haand current density of the order of 1 mA mmin this case
only recently become a subject of experimental st{itly}.  the vortex velocityy was of the order of 1G m sec?, in
Due to the nonhomogeneous surface potential barrier and a&ccordance with Eq.3).
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These experiments can be expanded to ac currents, to sy$) is carried away with the convective velocity(convec-
tems with periodically ordered pinning centers, etc. In thetive instability). Finally, for v2<4a, the edgex; , have dif-
interpretation of these and similar experiments one has téerent signs, i.e., the wav# # 0 moves in both directions
take into account the presence of noise. It is just the aim ofabsolute instability

this work to prepare the basis for analyzing such experi-
II. SOLUTION OF THE LINEARIZED EQUATION

ments.

WITH VARYING VELOCITY

B. Solution of the linearized equation with constant velocity A. Slowly varying velocity
For the stability analysis we will use the linearized ver- L€t US consider our basic equatiod) in the case where
sion of Eq.(2): the velocity is a slowly varying function of the spatial posi-

tion x,
A A e
XX It ax2 IX ’

One can eliminate the term in by defining a new function

I'(x.1) such that wheree< 1. The full analysis of Eq(11) with a=a(ex) and

v=const has been performed by Hunt and CrigHttsj. By

X vt substituting
W(x,t) = F(x,t)exp(% - Uj) (7) 1(
W(x,t) = <D(x,t)exp<—J v(ex’)dx’), (12
On substituting Eq(7) into Eg. (6), one gets 2Jo
T  &T one gets the following equation fapb(x,t):
otox @_rf_%[ 1mu]¢ 13
i.e., the stability analysis of the linearized version of the at  axt 2 dx 4 '
Ginzburg-Landau equatiof®) with constant convective ve- : ; -
locity is similar to that of the appropriate equati¢8) for Thus, for a linear fun<2:t|om;(ex) UotuaeX, One gets
immobile systems. The solution of E) is proportional to ab P 1 1 1
i ile sy uti @) is proporti —:—2+{a—@+—wl——vovlex——v%ezxz](b.
X2 Jat  Ix 4 2 2 4
exp at— al 9 (14)
Then, according to Eqg8) and(9), the exact solution of Eq.  Hence, with the help of Eq12) the linear variation of
(6) will contain an exponential of the form v(ex) in Eqg. (11) transforms into a quadratic variation of
) a(ex) in Eq. (11) with v=0. The analysis of this cagd3]
exp{at— (x—ot) } (10) shows that the wave packet “edges” occur at
a | 2 % -2t = + U1 15
The exact solution of the linearized equati@) can be X €y r Bmax= \/a 2 (15)

found only for a constant convective velocity. When this )
velocity contains periodic or random terms we content ourBY analogy to the analysis performed above o const,
selves with approximate solutions. one concludes that E¢15) has no real solutions fax, i.e.,

the system is stable, when, foy>0,

C. Convective and absolute instability A < €U; (16)
max "
2

In contrast to immobile systems, there is more than one
type of instability in moving systems. The growing mode canThis condition replaces the stability conditian<0 for a
be shifted by flow so that locally a system remains stableconstant convective velocity.
and the phase boundary is moving downstrgaonvective All the above analysis refers to the linear equatiéin
instability), while for an absolute instability the phase bound-However, the possibility exists that the nonlinearity in Eq.
ary is moving both downstream and upstream, eventually?) dominates the inhomogeneity. This can happen, for ex-
covering the entire system. The following simple argumentsample, when at the entranegx=0) is already larger than
[13] illustrate these two possibilities. v?/4, i.e., the condition of absolute instability is satisfied,
The exact solution of the linearized equati@ contains  and the new mode develops at a distarse, such that the
the exponential form(10) which describes the propagating function a=ay—a;X, is still larger tharw?/4 [14].
wave packet. For eachone can find two values of, x
=[(vi\«’4—61)t], which define the behavior of the two “edges” B. Stability conditions for spatially dependent periodic
of the wave packet. Foa<0, there are no reat, i.e., no damping
divergent rays, and the system is stable. B&r4a, both The motion of fluxons is interrupted by their captures by
values ofx have the same sign, and the solutibs= 0 of Eq.  pinning centers. One can prepare a system in such a way that
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pinning centers are located periodically or quasiperiodically oT  &#T ar v
along the systerfil5]. Then the convective velocity will vary TR Ub(a + EF)COS|X +al. (23
periodically along the system, and the stationary version of
Eq. (6) takes the form Sinceb is assumed to be a small parameter, we will expand
5 the functionI” in a perturbation series as
Y v
ﬁ_v(l +b coslx)5+a\1f=0. (17 o
T(x,t) = X T(x,)b", (24)

Equation(17) with periodic coefficients has a Floquet solu- n=0

tion of the form[16] and consider only the two lowest-order terms in the expan-

W(x) = explax) (x) sion. These are readily seen to satisfy
- nix nix Il _ Ty
- inl 2% X —0=—D+al,,
ex;iax)ngoAn sm( 5 )+ B, cos< 5 ) (18) PrEe: 0
whgre the per.iodic function(x) is expanded in a Fourier _ aTy Ty v T,
series. According to the Floquet theorem, the Floguet multi- TR al'i=-v EFO + % coslx. (25

plier @« must vanish at the stability boundaries. On substitut-
ing Eq.(18) with =0 into Eq.(17) and comparing the har- Equationg25) can be easily solved with the appropriate ini-
monics in front of the sine and cosine terms, one obtains aglal and boundary conditions.

infinite system of linear equations féy, andB,, which have
nonzero solutions if the infinite determinant of these equa-
tions A(a=0) vanishesA(a=0)=0. One has to truncate this
determinant at some, and afterward to improve the result ~ We consider a linearized equati¢$) with the coordinate-
by taking into account the larger values mf Leaving only ~ dependent random velocity

terms withn=1, one obtains the following equations:

D. Space-dependent random velocity

d*w dw
12 Ibv B W‘U[l"‘f(X)]&"‘alP:O, (26)
(a— Z + T)A1+ EBl: 0,
where the random forcgx) is a Gaussian variable with zero
| 2 b mean and white noise correlator
U U
-—A;+|la-—-—/B;=0. 19
2™ ( 272 ) : 19 (EX)E0x0)) = DAX~Xy). (27)

Equationg19) have nontrivial solutions if the determinant of Let us rewrite Eq(26) as
these equations vanishes, which gives

dw
(4a-1%)? L{W}= vé—dx , (28)
b=/4+ e (20)

where
The stability boundary20) of the solutionW=0 has a V 5
form in theb-I plane with the stable state located inside this LW} = (d_ B Uﬂ . a)\lf. (29
curve. dx® T dx

Let us consider now a special case of ELr), when the

amplitude of the periodic force is small. In order to convert the differential equatig@6) into an

integro-differential equation we apply, followingl7], the

C. Slightly modulated convective velocity operatorL™ to Eq.(28), which gives
One can find the approximate solution of the linearized dw
Ginzburg-Landau equation with the modulated convective W:L_l{v§&}- (30
velocity
PR P Using the result that[L™Y{f}]=f, one can easily check
—=——-v(l+bcoslx)— +a¥ (21) that the integral operatdr™, which is inverse to the differ-
Jat  Jx 28 ential operatot. defined in Eq(29), has the following form:

for the case of a weak modulatitr< 1. As was done in Egs. 1 * v
(7) and(8), one can eliminate the term inby defining a new L Yf} = —J dxg exp[—(x— Xl):|Sir[a1(X = x)1f(xp),
functionT'(x,t) such that a1Jo 2

vX vzt> v?
v =r —-—. 22 ay=\/a-—, 31
(xt) (X,t)EXP< > "2 (22) 1 4 (31)
On substituting Eq(22) into Eq.(21), one gets ie.,
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W(x) == f dx, exp[ 2 (x- Xl):| sinfay (x - Xl)]g(tl)d_q,(xl) _ <§(t)§(tl)>_ =Dyt~ (39
aJo 2 dx After performing the Fourier transform
(32 ©
and P(x,t) = f_w ¥k, t)expikx)dk, (40)
(?j_\lf _ Ef dx, exp[— E(x—xl)}g(xl)@(xl) Eq. (38) takes the form
X aJp 2 dx P
’ “— =[a- K- ikv - ik &t) V. (41)
X{al cogda (X —xy)]+ ESir{al(X - Xl)]} . (33 It
The solution of Eq.(41) with the initial conditionﬁf(tzo)
On substituting Eq(33) into Eq. (28), one obtains :‘T’o is
d? d _ _ t
e vg(’fa)‘l'(x) = —J dx ex (X X1) W (k,t) = W exd (a- k2 - iko)t] exp<— ikvfo §(7‘)d7’) ,
x€00£00) S x) (42
which, after using the well-known result
v (exp(—ikv) [4é(r)d7) =exd—(k%?D,/2)t] and performing the
x| Zsinay(x-xy)] inverse Laplace transform, gives
T(xt) ~ p[( _ v? )t+ 2xv — X2t }
tacofayx=xp)lr. (34 U= a0 +v02) ) T 2@ +0v2Dy2) |
On averaging of Eq(34), for the noise defined in Eq27) (43)
one finds It follows from Eq. (43) that an instability occurs when
dv dv 02
<§(X)§(X1) OIX(X1)> <§(X)§(X1)>< —-(x )> < OIX(X)>- a> 41 +0°Dy2)" (44)

(85 which is the simple generalization of the conditiar v?/4

The substitution of Eq35) into the averaging equatiqa4) N the absence of noise.

shows that for white noise one gets F. Time-dependent periodic damping

d? Let us compare now the results obtained in the previous
[dxz v(1 +UD)_ +a}<‘y> (36) section with the periodically varying damping described by
the equation
On comparing this equation with the stationary version of 2
Eq. (6), one concludes that the existence of noise results in v _ _‘I’ _ oY
the renormalization of the velocity,— v(1+vD), which has It ox2 v[1+b cosiQt)] + av. (45)
to be substituted in the instability criteri@r>v?/4, leading . . .
to On performing calculations similar to Eq88)—(43) one ob-
tains the following solution of Eq45):
2 2
v5(1+vD) 2 :
= — X = (bv/Q)sin(Qt
a= 4 37 ‘P(x,t)%ex{(a—%)ﬁv[ ( 02) (@)
as the condition for the appearance of an absolute instability [x - (bv/Q)sin(Qt) ]2
for larger values of. - at } (46)
E. Time-dependent random velocity The instability occurs when the conditiar>v?/4 is satis-

fied, i.e., the addition of a time-periodic damping does not

We start from the case of the time-dependent random ve change the stability condition of the original equatié.

locity
PR ) PR IIl. APPROXIMATE SOLUTIONS OF NONLINEAR
—=— -1+ t)]— +av, (39 EQUATION FOR FAST VARYING SPACE-PERIODIC
at  ax? VELOCITY

where the random forcét) is a Gaussian variable with zero  So far, we have considered the linear versién of the
mean and white noise correlator non-linear equatioKi2), which was sufficient for the stability
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analysis. Note that for the subcritical Ginzburg-Landau equa- V. CONCLUSIONS
tion which contains the third and fifth powers of the order

parameter, one has to consider nonlinear stability analysis Recently performed experiments dealing with the propa-

[18]. - e -
: : . gation of vortices in the presence of a bias curif@if open
L.ﬁt tF*S qon3|_(lal_ﬁr the parametric fgrbefﬁslx a?. rapidly up a new area for both the experimenter and the theoretician.
osciating InX. 1hen, one can consider the nonlinear equay,, ,, e theoretical point of view, the ordered-disordered
tion (2) with v replaced by (1+b coslx), . .
phenomenon in vortex matter provides another example of
5 phase transitions in moving systems. From the experimental
d-w dav . . :
(1+b coslx)d— +a¥ -pbP3=0. (47) point of view, this branch of research has opened up a chap-
X

5 U
dx® ter of studying the properties and possible new applications

Here, one can use an analytical method of separation b&f superconducting films. In addition to the dc biased current
tween the slow scabeand the fast scalkx, similar to the one  used in[11], one can use an ac current, or one can use films
used for a pendulum with fast oscillation of its suspensiorwith periodically ordered pinning centers, which will intro-
point [19]. Let us decompose the functioh into a sum of duce an additional periodi@n time and spagecomponent to
slowly and rapidly varying partd’ =¥, (x)+W,(x,Ix), which  the convective velocity.

will be chosen in the following form: Looking forward and trying to trigger these and similar
experiments, we considered the theoretical basis for their in-
\P:‘Ifl(x)<l+¥coslx)_ (48)  terpretation. A sharp interface between ordered and disor-
| dered moving vortex phases is a quantity immediately mea-

On substituting Eq48) into Eq.(47) one obtains two groups surablg by magneto—optica! measuremgnts of h'igh temporal
of terms, which are either slow ones varying significantlyrésolution[11]. In order to find the stability conditions of a
only over distances of the order &f or fast ones changing disordered phase for the supercritical Ginzburg-Landau free
over the distancesr/|. Performing the averages over dis- €nergy, it is sufficient to perform a linear stability analysis.
tances of order of %, one can replace the functioh,(x) by (This is in contrast to the subcritical case, where the nonlin-
its average over a single cycle |engﬂq1(x)_>m, while earity is destabilizing and a nonlinear analysis is required

sinIx, coslx, and sin® Ix vanish, sir? Ix:%, and one gets [18]) The stability criteria are formulated in term of the
finally coefficientsa andv in our equations, which are proportional

_ _ to the magnetic field and the bias current, respectively, and
d*w v%b\ d¥ 3v?\— — by changing these parameters one can go from one regime to
2\ o) ax T\dT o Y -b¥"=0. (49 ,iother. In the case of a constant dc current, the well-known
, - inequalities a<0, 0<a<wv?/4, and a>v?/4 define the
Hence, the existence of fast space oscillations of the conveggape, convective unstable, and absolutely unstable regimes,
tive velocity results in fma" correctiongproportional 10 eqnectively. It turns out that for an additional convective
small factors 11 and 11%) in the original equation. velocity periodic in time these criteria remain unchanged.
IV. STABILITY CONDITIONS FOR A SAMPLE OF FINITE For an additional space-periodic component one can point

SIZE out in the amplitude-wave vector the cur¢20) which di-

o , , vides the stable and unstable regions.
The finite size of a sample plays an important role in the i is 5 factor which is inherent in all experiments. It is

Interpretation of real experiments. As a matter O.f fact, for arbarticularly remarkable that the component of the convective
infinite system the convective term can be simply trans-

formed away by going to a moving frame. Returning now tovelocity random in space results in an increase of stability
the original linearized equatiai®) one can write the solution [see Eq.37)] while the one random in time decreases the

. . A . tability [see Eq(44)].
of this equation on the finite intervgd,L | with the boundar s - .
condlitiog:\IfI:O atx=0 lirlld\llf:\lf\gzo ]a\tAQ:L in th: formy Additional progress can be achieved when one has a small

[20] parameter in the problem. This latter can be a slowly chang-
ing or fast varying space-periodic velocity. Seeking the solu-
02 22 tions as a series in these parameters, one finds that in both
P(x,t) = Fy(x) + Fz(x)exp[(a— — - —2>t} (50) cases the system becomes more stable. The final comment
4 L refers to the finite size of the sample in all real experiments.
where Fl(x) and Fz(X) are some functions Of(, and n It turns out [See Eq(51)]tha.t this results in Only a small
=1,2,... .Since the most rapidly growing solution corre- change of the stability criterion.
sponds ton=1, a system is absolutely unstable for
v?
a= Z + F' (51) ACKNOWLEDGMENTS
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